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Abstract This paper considers the Omega function, proposed by Cascon, Keating &
Shadwick as a performance measure for comparing financial assets. We discuss the use
of Omega as a basis for portfolio selection. We show that the problem of choosing portfolio
weights in order to maximize Omega typically has many local solutions and we describe
some preliminary computational experience of finding the global optimum using a NAG
library implementation of the Huyer & Neumaier MCS method.
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1 Introduction

The Omega function was introduced in [5,11] as a measure for comparing the performance
of financial assets. A brief description is as follows. Suppose we have an m-day history of
returns, r , for an asset and that the observed returns lie in a range rmin ≤ r ≤ rmax. The
cumulative distribution of returns will have a form like the one shown in Fig. 1 in which
the horizontal axis represents the observed returns and the vertical scale shows f (r) =
P[asset return < r ].

In Fig. 1, the point A represents some threshold value for return rt . The Omega function
associated with rt is defined as

�(rt ) =
∫ rmax

rt
(1 − f (r))dr

∫ rt
rmin

f (r)dr
= Area BCU

Area LAB
. (1)

If rt is close to rmin then area BCU is much larger than area LAB and so � is large.
Conversely, � → 0 as rt → rmax. (Cascon et al. [5] show that � = 1 when rt is the
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Fig. 1 Typical cumulative
distribution of returns on an asset
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Fig. 2 �(rt ) for
0.0% ≤ rt ≤ 0.65%
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mean return for the distribution.) Hence the size of � is a measure of the extent to which the
historical performance of an asset has exceeded the threshold return rt . In particular, Keating
and Shadwick in [11] describe the Omega function as a probability adjusted ratio of gains to
losses and say that, for a given threshold rt , the simple rule of preferring more to less implies
that an asset with a high value of Omega is a better investment than one with a lower value.

Figure 2 shows how � typically varies with rt .
� curves like the one in Fig. 2 can be used to compare several assets. Figure 3 plots � for

three assets (referred to as A–C) when rt is in the range 0.4–0.8%. Using the argument of
Keating and Shadwick [11], we can say that Fig. 3 shows that asset A is always to be preferred
to asset B because its � value is higher for all values of threshold return. Moreover, if the
threshold return is less than about 0.6% then asset A is also better than asset C. However
this situation changes as the threshold is increased and asset C becomes the best investment
when target return is between 0.6% and 0.8%.
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Fig. 3 �(rt ) plots for assets
A–C
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2 Using � for portfolio optimization

In this paper we regard � as more than a means of comparing individual assets and use it as a
basis for portfolio selection. Consider a portfolio involving n assets in which y1, y2, . . . , yn

denote the invested fractions (or weights) which specify what proportion of the investment is
assigned to each asset. Suppose also that we have an m-day history of asset returns r ji , j =
1, . . . , n, i = 1, . . . , m. Then, for any values of the y j we can use this historical data to
determine how the corresponding portfolio would have performed over the previous m days.
Specifically, the portfolio return on day i would have been

Ri (y) =
n∑

j=1

r ji y j for i = 1, . . . , m. (2)

From these values of Ri we can construct a cumulative return distribution similar to that in
Fig. 1; and then for any threshold return rt we can evaluate �(rt ). This � value obviously
depends on y1, . . . , yn and so a possible way of optimizing the portfolio would be to choose
the invested fractions to maximize �(rt ). For practical reasons the invested fractions must of
course satisfy the constraint

n∑

j=1

y j = 1. (3)

(We might also want to impose other conditions such as bounds on the y j ).
Maximizing � represents a significantly different portfolio selection strategy from the

more familiar Markowitz approach [12] which involves choosing the invested fractions to
minimize a measure of portfolio risk. Specifically, if r̄ j denotes the mean of the values
r ji , i = 1, . . . , m and if Q is the variance-covariance matrix for the historical data r ji , j =
1, . . . , n, i = 1, . . . , m then the expected portfolio return is

R̄(y) = E(Ri (y)) = yT r̄ (4)

and portfolio risk can be defined as

V (y) = yT Qy. (5)
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Hence an extremely risk-averse investor could choose a portfolio simply by minimizing V (y)

subject to the constraint (3). This strategy ignores return altogether and, more realistically, a
portfolio with low risk and high return could be obtained by minimizing a composite function
such as

−λyT r̄ + (1 − λ)yT Qy

where λ is a parameter between 0 and 1 which controls the balance between return and risk.
Alternatively, a portfolio could be chosen to maximize the Sharpe ratio

S = yT r̄ − rt

yT Qy
. (6)

Clearly the maximum of S can be expected to yield a portfolio which gives low risk together
with an expected return which significantly exceeds the threshold rt . Finally, if we want to set
a target value for portfolio return, we could minimize V (y) subject to (3) and an additional
constraint such as

n∑

j=1

r̄ j y j = Rp = a specified expected portfolio return. (7)

The use of Omega in portfolio selection has been proposed by a number of authors—see
for instance [1,6,7,14]—and the theoretical properties of Omega have been quite widely
discussed. It is argued in [5] that Omega differs in an important way from other statistical
estimators in that it is calculated directly from the historical data and hence it can be seen as
equivalent to the actual returns distribution. This is in contrast to risk measures based only on
the mean and variance which may not capture all the features of the data. Avouyi-Dovi et al.
[1] agree with this observation and, in particular, they compare Omega with the Sharpe ratio,
remarking that the use of expression (5) for risk in (6) is based on the prior assumption that
the asset data is normally distributed. No such assumption is made in the definition of Omega
and hence it should give a better representation of data with a non-normal distribution—e.g.,
asymmetric data—which can frequently be encountered. When dealing with non-normal dis-
tributions, Keating and Shadwick [11] say that the simplicity of the calculation of � gives
it an advantage over more sophisticated statistical measures involving estimation of higher
order moments.

Another advantage of � pointed out by Avouyi-Dovi et al. [1] is that the way rt contributes
to the definition (1) means that the choice of threshold value can be a useful way of taking
into account an investor’s preferences about loss and gain. Mausser et al. [14] agree with
this general remark about the role of rt ; but they also observe that there may be situations
in which it is not obvious how to select a specific threshold value. They suggest that it may
sometimes be advantageous to maximize � for a range of thresholds in order to combine the
results in a more sophisticated higher-level portfolio selection process.

In later sections we shall consider the optimization methods used and results obtained by
other authors when maximizing Omega. First however we describe our own approach to this
problem.

3 Max-� portfolio selection—a simple example

Figure 4 shows some artificial 50-day return histories for three assets and Fig. 5 shows their
cumulative distributions.
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Fig. 4 Return histories for assets 1–3 (left to right)
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Fig. 5 Cumulative distribution of returns for assets 1–3 (left to right)

In order to construct a maximum-� portfolio from these assets we can use the fact that
y1 + y2 + y3 = 1 and calculate returns (2) as functions of y1 and y2 only, i.e.,

Ri (y) = y1r1i + y2r2i + (1 − y1 − y2)r3i , i = 1, 2, . . . , 50.

We can obtain �(rt ) from a cumulative distribution of R1, . . . , R50. We wish to exclude
solutions which involve short-selling and so we want to maximize �(rt ) subject to the con-
straints

y1 ≥ 0, y2 ≥ 0, 1 − y1 − y2 ≥ 0. (8)

In order to solve this inequality constrained problem we can apply an unconstrained mini-
mization algorithm to a penalty function

F(y1, y2) = 1

�(rt )
+ ρ{| min(0, y1)| + | min(0, y2)| + | min(0, 1 − y1 − y2)|} (9)

where ρ is a positive weighting parameter. It is well-known (see for instance [3]) that the min-
imum of the exact penalty function (9) coincides with the solution of the original inequality
constrained problem provided ρ is chosen sufficiently large.

For this demonstration example we take the threshold rt = 0 and set ρ = 1 The contours
of (9) are then as shown in Fig. 6. The jagged nature of these contours is due to the fact
that the cumulative distribution functions in Fig. 5 are non-smooth and hence the numerical
integral involved in computing � does not change smoothly as the invested fractions change.
In the upper part of the figure the third constraint penalty term in (9) becomes active and
there is a further discontinuity of slope along the line y1 + y2 = 1.

The contour lines in Fig. 6 suggest that there are a number of possible minima some
of which are in the regions indicated by arrows. We can seek to locate these minima pre-
cisely by minimizing (9) using the Nelder and Mead Simplex algorithm [15] as implemented
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Fig. 6 Contours of (9) when
rt = 0.0
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in the MATLAB procedure fminsearch [13]. This direct search technique is a suitable
method since the objective function F(y) is non-differentiable. Results from the simplex
method are consistent with Fig. 6 in that different local minima are found when the search is
started from different initial guesses. The best solution is found with y1 ≈ 0.57, y2 ≈ 0.43
giving � ≈ 5.49. However the other apparent minima are not artefacts of the contour-plot-
ting process and alternative solutions include y1 ≈ 0.41, y2 ≈ 0.59 (with � ≈ 5.37) and
y1 ≈ 0.44, y2 ≈ 0.56 (with � ≈ 5.27).

It is interesting to note that all these solutions are feasible points with respect to the con-
straints (8). The fact that y3 is always set to zero is easily explained when we consider the
value of �(0.0) for the three assets individually. For asset one �(0.0) ≈ 3.6; for asset two
�(0.0) ≈ 4.2 and for asset three �(0.0) ≈ 2.2. Hence it is not surprising that asset three
does not contribute to a portfolio designed to maximize �.

The observation that (9) has many local minima immediately makes portfolio selection
by maximizing � a more challenging problem. The non-convexity and non-smoothness of �

has also been noted in [1,7,14]. Hence the calculation of a Max-� portfolio is more difficult
than the Markowitz approaches. Minimizing (5) subject to constraints (3) and (7) is a convex
quadratic programming problem while minimizing the Sharpe ratio (6) subject to (3) is a
nonconvex problem but the function and constraint are both differentiable.

If we wish to find a maximum-� portfolio by minimizing a penalty function like (9) then
the simplex method is not really suitable since it is only a local optimization procedure. We
might seek a global optimum of F by using a multistart technique which would essentially
involve runningfminsearch from a large number of randomly distributed starting guesses.
This seems unlikely to be an efficient process for a portfolio involving a large number of
assets. Other approaches to the global optimization problem that have been proposed can
be divided into two types: stochastic and deterministic. Stochastic approaches involve some
element of random sampling of the space of the variables together with rules for accepting or
rejecting new trial points. Examples are Simulated Annealing, Genetic Algorithms and Tabu
Search. Deterministic algorithms make a more systematic exploration based on information
accumulated about the objective function on previous iterations and among methods of this
type we mention DIRECT [10] and the MCS algorithm [9] which is described in the next
section.
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Avouyi-Dovi et al. [1,2] use a non-smooth penalty function like (9) to solve the max-
imum-� problem and they employ a technique called Threshold Acceptance which they
characterize as a deterministic version of Simulated Annealing. This method is described
by Gilli et al. [8] and is also used by them for Omega-based portfolio optimization in [7].
Mausser et al. [14] prefer to consider the maximum-� problem in its constrained form, rather
than reducing it to a penalty function minimization. They propose avoiding the difficulties
of dealing with multiple solutions of this nonconvex problem by transforming it into a much
simpler linear programming calculation. This only yields a solution to the original problem
under certain circumstances which are fully discussed in [14].

We have a preference for deterministic rather than stochastic methods for global optimi-
zation. This preference is largely based on a study [4] in which DIRECT [10] was found
to perform much better than two tabu search methods on a route-finding problem. DIRECT
works by repeated splitting of the region of search into smaller hyperboxes, using the accu-
mulated record of function values at points sampled so far to decide which of the current
hyperboxes seem most promising candidates for further subdivision. The Multi-level Co-
ordinate Splitting (MCS) method [9] works in a broadly similar manner and was our choice
for seeking global solutions to the Max-� problem because of the ready availability of a
beta test implementation [16] from the NAG MATLAB toolbox [17]. An outline of the MCS
method is given in the next section.

4 Using the MCS algorithm for maximum-� problems

We consider problems involving a n-asset portfolio based on an m-day performance history.
As before, we use the relation

∑
j y j = 1 and express daily portfolio returns in terms of

invested fractions as

Ri =
n−1∑

j=1

r ji y j + r jn

(

1 −
n−1∑

k=1

yk

)

, for i = 1, . . . , m.

From the cumulative distribution function for these Ri we can evaluate �(rt ) for a specified
threshold return rt . We calculate Max-� portfolios (in which short-selling is not permitted)
by finding y1, . . . , yn−1 to minimize the exact penalty function

F(y) = 1

�(rt )
+ ρ

{
n−1∑

i=1

∣
∣ min(0, yi )

∣
∣

}

+ ρ
∣
∣ min

(

0, 1 −
n−1∑

i=1

yi

)
∣
∣. (10)

In order to find a global optimum of (10) we use the MCS algorithm [9] implemented as the
NAG procedure e05jb [16].

4.1 The MCS algorithm and its e05jb implementation

The MCS algorithm seeks a global minimum of an n-variable function F(x) in a hyperbox
defined by l ≤ x ≤ u. (In what follows we shall simply use the term box when strictly we
mean an n-dimensional hyperbox.)

MCS searches for a global minimizer using branching recursively in order to divide the
search space in a nonuniform manner. It divides, or splits, the root box [l, u] into smaller
sub-boxes. Each sub-box contains a basepoint at which the objective function is sampled. The
splitting procedure biases the search in favour of sub-boxes where low function values are
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expected. The global part of the algorithm explores sub-boxes that enclose large unexplored
territory, while the local part splits sub-boxes that have good function values.

A balance between the global and local parts of the method is achieved using a multilevel
approach, where every sub-box is assigned a level s ∈ {0, 1, . . . , smax}. The value of smax

can be specified by a user. A sub-box with level 0 has already been split; a sub-box with
level smax will be split no further. Whenever a sub-box of intermediate level 0 < s < smax is
split a descendant will be given the level s + 1 or min(s + 2, smax). The child with the better
function value is given the larger fraction of the splitting interval because then it is likely to
be split again more quickly.

An initialization procedure generates a preliminary set of sub-boxes, using points input by
the user or derived using a default generation procedure. The method ranks each coordinate
based on an estimated variability of the objective function, computed by generating quadratic
interpolants through the points used in the initialization. Then the algorithm begins sweeping
through levels.

Each sweep starts with the sub-boxes at the lowest level, this process being the global
part of the algorithm. At each level the sub-box with the best function value is selected for
splitting; this forms the local part of the algorithm. A box is split either by rank (when it
reaches a sufficiently high level; in particular, as smax → ∞ this ensures each coordinate
is split arbitrarily often) or by expected gain (along a coordinate where a maximal gain in
function value is expected, again computed by fitting quadratics).

The splitting procedure as a whole is a variant of the standard coordinate search method:
MCS splits along a single coordinate at a time, at adaptively chosen points. In most cases
one new function evaluation is needed to split a sub-box into two or even three children.
Each child is given a basepoint chosen to differ from the basepoint of the parent in at most
one coordinate, and safeguards are present to ensure a degree of symmetry in the splits. In
the NAG implementation e05jb an optional parameter Local Searches can be set to
‘OFF’ and this causes MCS to put the basepoints and function values of sub-boxes of maxi-
mum level smax into a ‘shopping basket’ of candidate minima. Turning Local Searches
‘ON’ will enable local searches to be started from these basepoints before they go into the
shopping basket.

Local searches go ahead providing the basepoint is not likely to be in the basin of attraction
of a previously-found local minimum. The search itself uses linesearches along directions
that are determined by minimizing quadratic models, subject to bound constraints. In partic-
ular, triples of vectors are computed using coordinate searches based on linesearches. These
triples are used in triple search procedures to build local quadratic models for the objective,
which are then minimized using a trust-region-type approach. The quadratic model need not
be positive definite, so it is minimized using a general nonlinear optimizer.

4.2 Calculating maximum � portfolios with e05jb

We now consider a 10-asset portfolio based on a 100-day history. We can summarize the
properties of the 10 assets by showing their mean returns and displaying plots of their �

functions. The mean returns are

r̄1 = 0.078%, r̄2 = −0.066%, r̄3 = 0.01%, r̄4 = 0.048%, r̄5 = −0.07%

r̄6 = 0.044%, r̄7 = 0.003%, r̄8 = 0.02%, r̄9 = 0.040%, r̄10 = −0.045%.

For clarity we give �-plots in groups of four assets at a time. Figure 7 shows the four
highest � curves. Asset 1 has the best � value for threshold returns in the range 0 ≤ rt ≤ 0.1.
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Fig. 7 � plots for example
assets 1, 9, 6 and 4
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Fig. 8 � plots for example
assets 4, 7, 3 and 8
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Assets 9, 6 and 4 are the next best performers in terms of � and they remain consistently
ranked in this order although the curves for assets 6 and 4 touch near rt = 0.04% and the
curves for assets 6 and 9 touch near rt = 0.03%.

Figure 8 shows � plots for Assets 4,7,3 and 8. There are some changes of ranking between
these assets as rt increases: asset 8 is the worst performer when rt is near-zero but almost
matches asset 7 in being the best performer of this group as rt → 0.1%.

Finally, Figure 9 shows that assets 2,10 and 5 have �-values which are well below asset
8. Assets 2 and 10 change places once or twice over the range of rt but asset 5 is uniformly
the worst choice.

We now consider the global minimization of the function (10) formed using data from
our sample set of 10-assets and with various values for threshold return rt . Table 1 shows
Max-� portfolios obtained by applying e05jb in the search box defined by 0 ≤ yi ≤ 1 for
i = 1, . . . , 9. In the column for invested fractions we show only those which are non-zero.
For the smaller values of rt the solutions generally favour assets 1,4,6 and 9 which is con-
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Fig. 9 � plots for example
assets 8, 2, 10 and 5
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Table 1 Max-� portfolios for
varying rt

rt (%) Invested fractions �max

0 y1 = 0.147, y2 = 0.040, y3 = 0.213, y4 = 0.208 7.08

y6 = 0.286, y7 = 0.007, y9 = 0.099

0.025 y1 = 0.118, y2 = 0.036, y4 = 0.225, y6 = 0.361 5.16

y7 = 0.003, y9 = 0.219

0.05 y1 = 0.235, y4 = 0.099, y6 = 0.357, y7 = 0.051 4.11

y9 = 0.21, y10 = 0.046

0.075 y1 = 0.884, y5 = 0.035, y7 = 0.039, y9 = 0.043 3.48

0.1 y1 = 0.977, y5 = 0.014, y8 = 0.009 2.97

Table 2 Expected return and
risk for Max-� portfolios

rt (%) Rp (%) V

0 0.038 0.058

0.025 0.040 0.064

0.05 0.045 0.061

0.075 0.068 0.211

0.1 0.075 0.261

sistent with the � curves in the graphs in Figs. 7–9. For rt = 0.075% and rt = 0.1% the
portfolios are strongly dominated by asset 1.

Table 2 gives more information about the Max-� solutions in terms of their portfolio
expected return Rp and risk V . Note that the optimized portfolio expected returns Rp are not
the same as the threshold values rt used in defining �.

We now consider how the portfolios in Table 1 compare with those obtained by minimizing
the risk associated with the target returns Rp in Table 2.
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Table 3 Min-V portfolios giving same expected return as Max-� portfolios

Rp (%) Invested fractions Vmin

0.038 y1 = 0.201, y3 = 0.069, y4 = 0.115, y6 = 0.171 0.035

y7 = 0.122, y8 = 0.09, y9 = 0.191, y10 = 0.039

0.040 y1 = 0.214, y3 = 0.065, y4 = 0.118, y6 = 0.173 0.037

y7 = 0.116, y8 = 0.095, y9 = 0.192, y10 = 0.025

0.045 y1 = 0.260, y3 = 0.049, y4 = 0.133, y6 = 0.174 0.043

y7 = 0.101, y8 = 0.091, y9 = 0.193

0.068 y1 = 0.740, y3 = 0.015, y4 = 0.08, y6 = 0.085 0.156

y8 = 0.035, y9 = 0.046

0.075 y1 = 0.817, y4 = 0.027, y6 = 0.085 0.184

y7 = 0.029, y8 = 0.044, y9 = 0.083

4.3 Comparing maximum � and minimum-risk portfolios

We can compare Max-� portfolios with more conventional minimum-risk ones (denoted by
Min-V ). We calculate the Min-V portfolio by minimizing (5) subject to constraints (3) and
(7) using the Rp achieved by the Max-� solutions in Table 2. We also include positivity
constraints on the invested fractions to prevent short-selling. Results are shown in Table 3.
Clearly the invested fractions yi are substantially different from those in Table 1. The Min-V
solutions tend to use non-zero contributions from more of the assets; and almost the only
point of similarity is the growing dominance of asset 1 as Rp increases. Comparing the values
Vmin with the values of V in Table 2 we can see that, for a given level of portfolio return, the
Max-� portfolios are appreciably more risky than Min-V ones with the ratio

risk of a Max-� portfolio

risk of a Min-V portfolio

lying between 1.4 and 1.7.
It is interesting to compare the cumulative distributions of returns for Max-� and Min-V

portfolios. Figure 10 shows the two curves for the case when Rp = 0.038%. (Figures for
other values of Rp are generally similar to this one.)

Both curves are quite similar in the central part but the dotted curve for the Min-V port-
folio has a shorter tail towards the upper end of the range of observed returns. This simply
reflects the fact that the Max-� solution seeks to adjust the areas above and/or below the
curve defined by (1) in order to maximize the ratio �.

A Min-V portfolio based on the risk definition (5) is calculated to minimize deviations
both above and below expected portfolio return Rp . A Max-� solution, on the other hand,
is concerned with seeking a portfolio to obtain more than the threshold return rt . Hence a
Max-� portfolio might be expected to have more in common with one which is designed to
minimize downside risk—that is the risk of obtaining less than target return. If Ri (y) is the
portfolio return given by (2) then downside risk can be calculated as

DV = 1

m

m∑

i=1

[min(0, Ri (y) − Rp)] (11)
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Fig. 10 Comparing Max-� and
Min-V for Rp = 0.038%
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Table 4 Min-DV portfolios giving same expected return as Max-� portfolios

Rp (%) Invested fractions DVmin DV�

0.038 y1 = 0.193, y2 = 017, y3 = 0.062, y4 = 0.150, y6 = 0.172

y7 = 0.119, y8 = 0.083, y9 = 0.18, y10 = 0.023 0.017 0.027

0.040 y1 = 0.204, y2 = 0.006, y3 = 0.065, y4 = 0.155, y6 = 0.172

y7 = 0.118, y8 = 0.083, y9 = 0.18, y10 = 0.017 0.018 0.029

0.045 y1 = 0.253, y3 = 0.064, y4 = 0.165, y6 = 0.17

y7 = 0.096, y8 = 0.073, y9 = 0.178 0.021 0.031

0.068 y1 = 0.782, y4 = 0.148, y6 = 0.008

y8 = 0.015, y9 = 0.021, y10 = 0.026 0.09 0.11

0.075 y1 = 0.932, y2 = 0.001, y4 = 0.017, y6 = 0.048 0.13 0.14

(see [3] for instance). Table 4 shows the portfolios obtained by minimizing downside risk
DV for the values of Rp in Tables 2 and 3. It also quotes the value DV� of downside risk at
the corresponding Max-� solution.

In most of the rows of Table 4, the invested fraction distribution in the Min-DV portfolios
bears more resemblance to that of the Min-V ones than to that of the Max-� solutions. The
only evidence of a relationship between Min-DV and Max-� portfolios is confined to the
larger values of Rp , for which the Max-� portfolios have a downside risk that is not very
much inferior to DVmin.

4.4 Comments on the performance of e05jb

The global optimization algorithm implemented in e05jb has performed quite successfully
on the problems considered above. It has certainly been more efficient than a rather crude
multistart approach in which the simplex method in fminsearch was applied from 50
to 100 random starting points. This procedure was reasonably useful for the demonstra-
tion three-variable example in the previous section; but for the ten-variable case it was very
time-consuming and seldom yielded as good an estimate of the global solution as e05jb.

123



J Glob Optim (2009) 45:153–167 165

Notwithstanding these positive comments, however, it must be noted that in order to obtain
satisfactory results we have had to do some trial-and-error tuning of user-specified parameters
of e05jb. These are listed below.

• Selection of initial points. These are used by the algorithm in deciding whereabouts along
the coordinate axes to split the original box. These points may be user-defined; but there
are a number of default options for selecting them automatically. We had most success
with the default approach in which initial splitting points are selected on the basis of local
searches along each coordinate axis.

• Balance between global and local searching. The user can specify how many iterations of
a local minimization method are to be used to refine each point identified by the splitting
procedure as a candidate global solution. These local searches use a trust-region approach
based on quadratic interpolation. While this is often likely to be a good approach, it may
not be very suitable for our application since the objective function (10) is nonsmooth.
Consequently we have chosen to use rather few local search iterations compared with
the suggested default. We have sought to compensate for this by increasing the rigour of
the global search and making the number of splitting points per variable about twice the
suggested default value.

• Setting termination conditions. The main tests for successful termination of e05jb are
based either on the search reaching a pre-specified target function value or on there being no
decrease in the best function value for a pre-specified number of sweeps (the static limit).
Furthermore e05jb may terminate unsuccessfully—i.e. with a non-zero error flag—if
a specified number of function evaluations or box splits is exceeded. We found that the
suggested value for the static limit (3n sweeps) was often too small and sometimes led to
the method stopping well short of the global solution. We had to increase this to at least
5n to obtain acceptable solutions consistently. Basing successful termination on reaching
a target function value is a more reliable way of ensuring that a satisfactory stopping point
is reached: but often it is not possible to know in advance what the global minimum func-
tion is likely to be. We were largely able to avoid unsuccessful terminations by taking the
maximum number of splits as being 120 and the maximum number of function calls as
15,000.

In the absence of a computable test for a global optimum (as opposed to a local one),
algorithms like MCS must terminate on the basis of heuristic rules (like those mentioned in
the previous paragraph) which suggest that there is little or no further reduction in function
value to be obtained. Depending on how high the threshold is set for the number of sweeps
without a function decrease, we can expect MCS to terminate within a fairly small box
around—but not precisely at—the global optimum. MCS is designed to use quadratic local
searches to improve on the sample points in each box; but these may not be very effective
on the nonsmooth problem we are considering. As a consequence of these two factors, it is
unlikely that the best point returned bye05jbwill give the global optimum to high precision.
We have confirmed this by running the MATLAB implementation of the Nelder and Mead
simplex method (fminsearch) from the best point found by MCS and observing that it is
usually able to obtain a small further reduction in function value. It is these refined estimates
of global solutions that are quoted in Table 1.

5 Conclusions

We have given a preliminary account of an investigation of portfolio selection methods based
on seeking invested fractions which maximize � as defined in (1) [5,11]. Because maximiz-
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ing � leads to a non-convex problem, we have considered some Max-� portfolios produced
using the MCS global optimization algorithm [9] as implemented in the NAG procedure
e05jb [16]. We have compared these portfolios with ones produced using the well-known
Markowitz approach [12] based on minimizing risk. Our small-scale sample calculations
indicate that, for a given set of assets, a Max-� portfolio can be quite different from port-
folios based on minimizing risk or downside risk. The occurrence of such differences is
consistent with the original motivation [11] for considering the Omega ratio. Keating and
Shadwick argue that �(rt ) is a better measure of performance than the Markowitz mean
and variance measures because it does not rest on any prior assumptions (such as normality)
about the distribution of asset returns. These arguments are quite persuasive: but we have not
investigated whether Max-� portfolios are better than minimum-risk ones in any practical
sense. To do this we would need to use back-testing based on real-life asset data which
would allow us to compare subsequent performance of rival portfolios. Some Max-� results
with real-life data are reported and discussed in [1,7,14]. In particular, Avouyi-Dovi et al.
[1] compare a Max-� portfolio with one obtained by maximizing the Sharpe ratio (6). They
comment that the Sharpe portfolio over-invests in an asset displaying negative asymmetry
whereas the Omega portfolio avoids this undesirable feature.

Maximizing � has been found to lead to a non-convex and nonsmooth optimization prob-
lem. Applying the MCS algorithm [9] (using the NAG implementation e05jb) to an exact
penalty function has proved quite successful. Since our main aim in this paper has been to
show that the problem of portfolio selection by maximizing � is one that can be solved with
off-the-shelf software, it is encouraging that we have been able to use the automatic proce-
dures in e05jb for generating initial points. However this means that we have not obtained
any systematic information about how the algorithm’s behaviour can be affected by poor
choices of starting guess. This question could be part of a more exhaustive numerical inves-
tigation of MCS/e05jb which has not yet been carried out. Such an investigation would, of
course, also need to explore the practicality of solving the Max-� problem for much larger
numbers of assets.

In view of the non-smoothness of �, one might also consider alternatives to MCS (which
uses quadratic interpolation and hence assumes differentiability). Within the scope of the
present work we have not attempted any comparison between MCS and other global opti-
mization techniques. However it is worth mentioning that the DIRECT method [10] is a
box-splitting approach which does not use quadratic models and hence might be more suit-
able for our nonsmooth problem. This remains an interesting topic for further work.

As a final remark, we mention that the issue of nonsmoothness of � may be alleviated if
we deal with assets for which a long performance history is available. This may make the
cumulative density functions appear rather less jagged.
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